((4x)^2)+((3x)^2)=20.25

Simple and best practice solution for ((4x)^2)+((3x)^2)=20.25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((4x)^2)+((3x)^2)=20.25 equation:



((4x)^2)+((3x)^2)=20.25
We move all terms to the left:
((4x)^2)+((3x)^2)-(20.25)=0
determiningTheFunctionDomain 4x^2+3x^2-(20.25)=0
We add all the numbers together, and all the variables
7x^2-20.25=0
a = 7; b = 0; c = -20.25;
Δ = b2-4ac
Δ = 02-4·7·(-20.25)
Δ = 567
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{567}=\sqrt{81*7}=\sqrt{81}*\sqrt{7}=9\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-9\sqrt{7}}{2*7}=\frac{0-9\sqrt{7}}{14} =-\frac{9\sqrt{7}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+9\sqrt{7}}{2*7}=\frac{0+9\sqrt{7}}{14} =\frac{9\sqrt{7}}{14} $

See similar equations:

| 90=45+5x | | 4x+3x=20.25 | | 8x+12+9x=15+12x+12 | | 4w=(5-w)-4(10w-2) | | 2x+34=10 | | c/5+4=-4 | | 0,2x-0,5=0,3x-1,4 | | 8y^2-20y=0 | | 8-6x+x=23 | | 4x=7-39 | | 0.04(10,000)+0.08x=0.078(10,000+x) | | c+1/8=4/5 | | -5t^2+100=0 | | 3y-18=28 | | x+3x+2x+24°=90° | | -5t^2-60t+100=0 | | -4b^2-10b+6=0 | | 1/3(x-15)=95 | | 2x^2=-18+12x | | 2+3x=27 | | 10=3y–2 | | 8/4x+6=3 | | 6/7x+4=3/5x-3 | | (x-40)+(1+2x)=180 | | 6/3x+3=9 | | 5-8(x+24)=(-15)(15+x) | | 7x–9=5 | | 25+137+155+x=360 | | 7p–9=5 | | s−588= 3 | | 317x=360 | | 5x24=-26;x= |

Equations solver categories